

	AIRE-C)2°		resented here are intended for use by mand using AIRE-02 aeration equipm	the designer to estimate the power ent. This method is not intended to cover
				an be answered by contacting Newter	
	Project Name:	Red Lake			
	Project Number:				
		MN USA			
	Unit Process:	Ŭ			
	Prepared by:	BFA			
	Input D	<u>ata (Blue Cells)</u>			Description
1	Flowrate =				Input flowrate
2	Volume =				Input volume
3	BOD in =		*Assumed Value Medium S	trength Domestic Waste	Influent BOD
4 5	BOD out = NH₄-N =		*Assumed Value Medium S	tranath Domostic Wasta	Design output BOD Design ammonia or TKN removal
6	Other =	~	Assumed value medium S	irengin Domestic Waste	Design animonia or Trav removar
0	Other =	ing/i			
7	BOD net =	200.0 mg/l			line 7 = (line 3) - (line 4)
8	BOD net =	243.5 lb/day			line $8 = (line 7) \times (line 1)/1000$
9	NH ₄ -N net =	·			line 9 = (line 5) x (line 1)/1000
10	Other =	0.0 lb/day			line 10 = (line 6) x (line 1)/1000
<u>ASSU</u>	MPTIONS				
11	O ₂ : BOD =	1.5 lb O ₂ / lb E	OD		Typically varies between 1 and 2
12	O ₂ : NH ₃ -N=		•		Typical value is 4.6
13	O_2 : Other =	lb O ₂ / lb C	Other		Depends on species
		IELD CONDITIONS (AOR)			
14	O_2 for BOD = O_2 for NH ₄ -N =				line $14 = (line 11) \times (line 8)$
15 16	O_2 for Other =				line 15 = (line 12) x (line 9) line 16 = (line 13) x (line 10)
	_				
17 18	AOR = AOR =				line 17 = (line 14) + (line 15) + (line 16) line 18 = (line 17) / (24)
CORR	ECTION FACTORS TO	DETERMINE O ₂ REQUIREM	IENT UNDER STANDARD CONE	DITIONS (SOR)	
10	Dasin Tomporatura	68 [°] F			
19 20	= Basin Temperature = Elevation				Input maximum basin temperature
20 21	$C_w =$		51		Input basin elevation Operating O ₂ conc. of wastewater
22	$\alpha =$				Mass transfer correction factor
23	β =				Saturation factor
24	C _{s20} =				O_2 saturation conc. at 20 deg Celcius
25	$\tau = $	1.00			Temperature correction factor
26	Ω=				Altitude correction factor
27	C _s =	8.7 mg/l			O_2 saturation conc. at field conditions
	(Standardized) SOD	34.0 Ib O ₂ / hou			
28	(Standardized) SOR =	34.0 Ib O ₂ / hou	1		
POWE	ER REQUIREMENTS			RECOMMENDATIONS	
	Init Model Init Output	Aspirator 2HP 3.6 lb O ₂ / hou	r	Unit Model Aspirator 2HP	Number of Units 65
	Power per Unit	2.0 hp		Total Power 130.0	hp
		2.0 110			
OXYGEN Basis of Design Mixing					
	SOR E of Units Required	34.0 lb O ₂ / hou	r	NOTES	
7	otal Output	36.0 lb U ₂ / hou	r		
7	otal Oxygen Power	<u>20.0</u> hp			
MIXING					
	ype of Mixing	Facultative Lagoon			
	Aixing Requirement	5.0 hp/MG			
	<i>Nixing Power Required</i>	<u>130.0</u> hp 65			
	otal Mixing Power	130.0 hp			
,					

Aeration Industries Internation						
Project Name:	0			Date 1/0/1900		
Project No.:	0			Prepared By	0	
,				Revision: 0		
	Design Flow =	146,000 gpd =	552.61 m3/d			
Lagoo	on Water Depth =	9 ft =	2.7 m			
	1st Cell in Series					
	agoon Volume = Cells in Series =	36.45 MG = 1	137963 m3			
	Cell 1 Volume =	29.70 MG =	112415 m3			

203.42 days

Suspended Growth BOD Removal Calculations

HRT in Cell 1 =

Aerated Lagoon Reactors In Series

(Metcalf & Eddy, 4th Ed., p.271)

$$S = S_o / [1 + (k_T / n) * \tau)]^n$$

where

S = effluent BOD concentration, mg/l $S_o = influent BOD concentration, mg/l$ T = total retention time, daysT = wastewater temperature, C $k_T = reaction coefficient, days-1$

n = number of reactors

$$k_{T} = k_{20} \left(\theta^{T-20} \right)$$

where

 k_{20} = reaction coefficient at 20 deg. C = 0.06 days⁻¹ θ = temperature factor = 1.04

REACTORS IN SERIES

Number of Reactors =

<u>Min. Lac</u>	goon Temperature	<u>Max. Lac</u>	Max. Lagoon Temperature	
T =	10 C	Τ=	20 C	
т =	203.42 days	т =	203.42 days	
So =	200 mg/l	So =	200 mg/l	
k _T =	0.04 days ⁻¹	k _T =	0.06 days ⁻¹	
S =	22 mg/l	S =	15 mg/l	

1

AIRE-02®		Aeration Industries International Cell 2 Design Calculations				
Project Name:	0			Date 1/0/1900		
Project No.:	0			Prepared By Revision: 0	0	
	Design Flow =	146,000 gpd =	552.61 m3/d			
Lagoo	n Water Depth =	9 ft =	2.7 m			
2nd Cell in Series						
Total Number of		36.45 MG =				
	Cell 2 Volume =	6.75 MG =	25548.8 m3			

46.23 days

Suspended Growth BOD Removal Calculations

HRT in Cell 2 =

Aerated Lagoon Reactors In Series

(Metcalf & Eddy, 4th Ed., p.271)

$$\left|S = S_o / [1 + (k_T / n) * \tau)]^n\right|$$

where

S = effluent BOD concentration, mg/l S_o = influent BOD concentration, mg/l T = total retention time, days T = wastewater temperature, C k_T = reaction coefficient, days-1

n = number of reactors

$$k_{T} = k_{20} \left(\theta^{T-20} \right)$$

where

 k_{20} = reaction coefficient at 20 deg. C = 0.06 days⁻¹ θ = temperature factor = 1.04

REACTORS IN SERIES

Number of Reactors =

<u>Min. Lag</u>	oon Temperature	Max. Lagoon Temperature	
T =	10 C	Τ=	20 C
т =	46.23 days	т =	46.23 days
So =	22 mg/l	So =	15 mg/l
k⊤ =	0.04 days ⁻¹	k _T =	0.06 days ⁻¹
S =	8 mg/l	S =	4 mg/l

1